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The particle effective mass in graphene is a challenging concept because the commonly used
theoretical expression is mathematically divergent. In this paper, we use basic principles to
present a simple theoretical expression for the effective mass that is suitable for both parabolic
and non-parabolic isotropic materials. We demonstrate that this definition is consistent with the
definition of the cyclotron effective mass, which is one of the common methods for effective mass
measurement in solid state materials. We apply the proposed theoretical definition to graphene and
demonstrate linear dependence of the effective mass on momentum, as confirmed by experimental
cyclotron resonance measurements. Therefore, the proposed definition of the effective mass can be
used for non-parabolic materials such as graphene.

I. INTRODUCTION

In solid state materials, many different effective mass
definitions are used such as the conductivity, density-of-
states, optical, and cyclotron effective mass [1], [2], [3],
[4]. It can be shown that the most commonly used the-
oretical definition of the effective mass, using the second
derivative of the energy, is limited to parabolic energy
dispersion. An alternative definition should be used for
non-parabolic materials such as graphene [5], [6].
In a recent work [7], a theoretical expression for the

effective mass was presented that seems suitable for both
parabolic and non-parabolic materials. In this work, we
demonstrate that this definition of the effective mass
is consistent with the definition of the cyclotron mass,
which is commonly used for experimental measurements
of the effective mass. Finally, we apply this definition
to graphene and show that it is in agreement with the
experimentally observed linear dependence between the
cyclotron mass and momentum.

II. DEFINITION OF THE EFFECTIVE MASS

We use the traditional semi-classical approach by as-
sociating particles with wave-packets. This is a standard
approach used in solid state physics for calculations of the
energy-band structure and charge transport properties.
Applying wave-particle duality, we associate particle

velocity with the group velocity of the wave-packet and
the particle momentum with the crystal momentum p =
~k. Then,

v = vg ≃
1

~

∂E

∂k
. (1)

The effective mass appears as a proportionality factor
between the particle momentum and the group velocity
of the wave-packet

p = ~k ≃ m∗vg . (2)

Based on equations (1) and (2) we immediately obtain

m∗(E, k) =
p

vg
= ~

2k

(

∂E

∂k

)−1

. (3)

Note that the effective mass defined above (3) is gener-
ally energy and momentum dependent. This theoretical
definition of the effective mass was previously developed
[5], [7] and sometimes reffered to as the optical effective
mass [2]. Often, the following theoretical definition of the
effective mass is used in solid state physics [4]:

m∗ =
1

∂2E/∂k2
. (4)

This expression is derived using an implicit assumption of
the parabolic E(k) relationship and therefore should not
be applied to non-parabolic E(k), as was demonstrated
in [7]. On the other hand, the effective mass defined by
Eq. (3) is not based on such an assumption and should be
suitable for an arbitrary E(k) relationship including non-
parabolic solid state materials such as graphene. Fur-
thermore, for the case of a parabolic material, this new
definition gives exactly the same result as the traditional
Eq. (4).

III. COMPARISON OF THE CYCLOTRON

MASS TO THE EFFECTIVE MASS

In the presence of a constant magnetic field, the part
of k parallel to the field, k||, is a constant of motion. The
part of k perpenidcular to the field, k⊥, changes in time
so that the elctron moves in k-space in a closed line of
constant energy. The electron therefore follows a spiral
path whose projection on a plane perpendicular to the
field is a closed path in both real space and k-space (See
chapter 12 in [1]). Similar to the free electron case, the
cyclotron resonance frequency for an electron in a solid is
defined using the concept of the cycltron effective mass:

ωc =
eH

m∗c
. (5)
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This leads to the cyclotron effective mass, m∗, given as
in [1]:

m∗ =
~
2

2π

(

∂A(E)

∂E

)

(6)

Where A(E) is the area bound by the closed path in k⊥
space that is traveled by the electron at the given energy
level E. In the absense of scattering, the particle trajec-
tory in an isotropic material is a circle perpendicular to
the direction of the field and so:

A(k) = πk2. (7)

For such an isotropic material we can apply the chain
rule in Eq. (6) and write:

m∗ =
~
2

2π

∂A(k)

∂k

∂k

∂E
= ~

2k

(

∂E

∂k

)−1

(8)

This demonstrates that the cyclotron effective mass [1]
for an isotropic material is equivalent to the theoretical
definition of the effective mass in Eq. (3). This result
would stay correct for any dispersion relation E(k) as
long as the material is isotropic.
It is also possible to derive Eq. (5) directly from

Eq. (3). We write the equation of motion for k⊥ in an
isotropic material:

~
∂
−→

k⊥
∂t

= −
e

c
−→vg ×

−→
H (9)

Since k⊥ and vg are perpendicular to H , we can use
the group velocity Eq. (2) to write:

~ωck =
e~kH

m∗c
⇒ ωc =

eH

m∗c
(10)

Thus, we got the cyclotron resonance directly from the
semi-classical equations of motion and from the effective
mass as defined by Eq. (3).

IV. APPLICATION TO GRAPHENE

The two-dimensional electron gas observed in graphene
can be described by the following isotropic E(k) relation-
ship in the vicinity of the Dirac points [9]:

E ≃ ~kvf , (11)

where vf is the Fermi velocity. Using this dispersion
relationship (11) and the definition of the group velocity
(1) leads to

vg ≃ vf . (12)

The definition of the effective mass (3) applied to
graphene dispersion relationship (11) results in

m∗
≃

p

vg
≃

~k

vf
. (13)

The above linear dependence of the particle effec-
tive mass on momentum in graphene was confirmed by
cyclotron resonance measurements [9]. Note that in
graphene the parabolic effective mass definition (4) leads
to a mathematically divergent expression.
The proposed definition of the effective mass Eq. (3)

can be successfully applied to graphene and can be ex-
perimentally verified.

V. CONCLUSIONS

In this work, we demonstrated that a simple theoretical
definition of the effective mass (3) is compatible with the
definition of the cyclotron effective mass, which is a com-
mon method for experimental measurement of the carrier
effective mass in solid state materials. We show that in
graphene this theoretical definition of the effective mass
results in correct experimentally observed dependence of
the carrier effective mass on momentum. Therefore, it
appears that the proposed definition of effective mass is
suitable for theoretical and experimental studies of parti-
cle transport properties in non-parabolic solid state ma-
terials such as graphene.
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